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Objectives

Investigate the range of validity of the 
quasi-steady approximation
• Periodic Component
• Random, broadband component

Gain a better understanding of the 
sound generation mechanisms
• periodic and broadband components
• steady and pulsating confined jet flows
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Bernouilli’s equation

2
sub sup 0 c

1p p U
2

− = ρ

assumptions:
• irrotational
• flow incompressibe
• along a streamline
• viscous effects neglected
• acceleration effects neglected
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Bernouilli’s Obstruction Theory

sub up
g

0

2(p p )
Q KA

−
=

ρ
assumptions:
• large area ratio Asub/Ag
• flow coefficient K combines discharge 

coefficient and approach velocity factor
• K=K(shape, area, inflow+outflow condition)
• same as Bernouilli’s equation
• all variable instantaneous (except density)
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Simplified Circuit
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assumptions:
• infinitely long tube
• receiver close to orifice
• negligible inductive effects
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Glottal Resistance

sub up sub up
g
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0
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−
ρ

• K=K(Ag,psub- psup)

• direct measurement of Ag, psup, psub sufficient to 

calculate Rg

• quasi-steady approximation states that for 

given geometry, Ag and ∆p, Rg is the same for 

steady or pulsating flows
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Non-Stationary Phenomena
• dφ/dt
• Vorticity shedding
• Large scale turbulent structures
• Flow induced by motion of wall
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Rubber Dynamic Physical Models

Advantages
• real size (no need for scaling)
• allow acoustic and simple flow 

measurements
• orifice shape easy to modify
• easy to add complexity to model geometry

Disadvantages
• real size (can’t easily perform detailed flow 

measurements for validation of CFD)
• some shape distortion at high frequency
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Experimental Facility
Inertial base (concrete slab)
Two large electro-dynamic shakers+power amplifiers
Rectangular Acrylic test sections

• anechoic terminations
• open tubes of different lengths

Flow supply and controller
• air, helium, and CO2 mixtures

Rubber glottis models (real size)
• molds machined using Stereo Lithography
• geometry defined using CAD (proE)
• three geometries (convergent, straight, and 

divergent)
Belt mechanical drive used for flow visualization
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Tube configurations
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Instrumentation
Two pairs of phased-matched microphones
Precision manometer
Precision gas flow meter
Photoelectric detector and light source
Accelerometers
Hot-wire anemometer (up to 6 channels)
Data acquisition systems
Smoke generator
High-speed camera (NAC)
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Flow Visualization

1 cm

converging

diverging

span view width view

steady open jet, 4 cm H2O 
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Bernouilli’s Equation
Direct verification

hot-wire anemometer
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Hot-wire velocity data

Fraction of one cycle

f =100 Hz, ∆ p =12 cm H2O, 
conv, HW
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Bernouilli’s Obstruction Theory
Indirect Method

• can’t easily measure instantaneous 
flow rate

• use inverse filter method
equivalent monopole strength
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Assumptions
• flow through orifice at any instant same 

as steady incompressible flow for same 
wall geometry and inlet boundary  
condition

• monopole source
• plane waves
• source strength is fluctuating volume 

velocity at orifice
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Procedures
• iteration method
• Predict sound pressure using Bernouilli’s

equation (steady form), using measured 
orifice area, mean pressure drop across 
the orifice, and orifice discharge 
coefficients measured statically

• Reflections accounted for using signal 
processing techniques (deconvolution)
• two-microphone method
• low-pass filter 
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equivalent monopole source model

•Dipole source due to 
unsteady pressure drop

•similar to vibrating piston
•Decompose into two 
monopole sources with 
equivalent source strength, 
each radiating to one side 
of the orifice

•two equivalent monopole 
sources equal in strength 
and opposite in phase

Inlet
Observer

Piston

Upstream Downstream

Outlet

- +
Upstream Downstream

Orifice

Acoustic
loading Rup

Acoustic
loading Rdw

Flow

Monopole sources
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Cd: orifice discharge coefficient obtained in steady flow 
measurement
R: reflection factor measured using two-microphone method
B: coefficient to be determined
At: orifice area measured using a photoelectric sensor
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Typical Result
Comparison between measured upstream sound pressure and 

prediction from quasi-steady assumption 
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Results
•f=80 Hz, ∆p0=12 cm H2O, 
convergent orifice, AA
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Effects of Mean Pressure

Volume velocity source at different pressure drop scaled by the 
square root of the mean pressure drop. Straight orifice, f=120 Hz.

12 cmH2O

9 cmH2O

6 cmH2O
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Effects of Driving Frequency
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•Driving frequency has small effect 
on source strength
•consistent with quasi-steady 
assumption
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Effects of acoustic loading
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• downstream tube modeled as close-
open tube

• velocity node at orifice
• resonance
• monopole ideal velocity source
• monopole source amplified
• dipole source at pressure anti-node

• f=100 Hz, ∆p0=12 cm H2O, divergent 
orifice

• Upstream and downstream volume 
velocity sources agree well
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Orifice area 
function

• Resonance in both subglottal 
and supraglottal systems (first 
resonance around 450 Hz)

• This causes errors in reflection 
coefficient measurements and 
leads to the failure of the 
iteration method

• Area can still be predicted using 
measured sound pressure and 
statically measured orifice 
discharge coefficient
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Tonal Component Results

• Good agreement between measured 
upstream sound pressure and prediction 
from quasi-steady assumption 

• Quasi-steady assumption valid for different 
orifice shapes at different operating 
conditions (driving frequency up to 120Hz)

• Suggests monopole model could be used in 
conjunction with 3-D incompressible steady 
numerical models
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Broadband Sound Production by 
Non-stationary Turbulent Jets

Periodic component obtained by ensemble-
averaging method, and extracted from signals

Statistics of turbulent sound in non-stationary 
flow at a particular instant compared to those 
for comparable stationary flow
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SPEECH
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Broadband Sound in Pulsating Jets
Orifice area is forced at specific 

frequency
Sound pressure is decomposed into a 

periodic component and a 
broadband component

Periodic component obtained by 
ensemble-average method

Broadband sound obtained by 
removing periodic component sound 
from measured pressure

Characteristics of broadband sound for 
non-stationary jet at a particular 
instant compared to those of 
stationary jets with same flow and 
orifice geometry

Two methods:
• Probability density function (PDF)
• Wavelet transform

Measured sound pressure

Ensemble-averaged periodic component

Turbulence generated sound
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•Agreement between PDFs evolves 
during one cycle
• Poor agreement during the 

beginning of orifice opening
•Agreement improves as the orifice 

continues to open
•Agreement decreases as the orifice 

begins to close
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•As driving frequency increases, 
general agreement between PDFs
decreases, especially during the 
orifice opening stage
• quasi-steady approximation may not 

be valid for broadband component
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Wavelet Analysis
Provides time information as well as frequency information
In STFT the size of the sliding window is fixed, while in 

wavelet analysis the window size is changeable, therefore 
giving same resolution for different frequency component

Daubechies 1 wavelet (a step function) used (similar results 
obtained with db2)

7-level wavelet transform used in this study
Signal

A1 D1

A2 D2

D7A7
D: Detail
A: Approximation

S=A7+D7+D6+D5+D4+D3+D2+D1

At each level, signal is decomposed into 
a Detail and an Approximation. The 
Detail corresponds to the high frequency 
component while the Approximation
corresponds to the low frequency 
component.
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Wavelet Coefficients
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Summary
• Turbulent sound synchronous with 

modulation of orifice area
• Two peaks during one cycle:
• first peak may be associated with the 

developing of the jet
• second peak associated with the quenching of 

the flow during closure.
• First peak less apparent for high-frequency 

component
• For same level of details, first peak becomes 

less apparent as the driving frequency 
increases
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• quasi-steady approximation verified in 
confined jets for tonal sound component 
across various flow conditions, orifice 
geometries, and acoustic loads

• non-stationary broadband investigated 
using PDF comparisons and wavelet 
analysis

• broadband sound generation appears to be 
non-stationary (not quasi-steady)

Conclusions
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Ongoing Work

Validation of quasi-steady assumption
• Coanda Effect
• Complex geometries (pathological)

Acoustic scaling laws
• Tonal and broadband
• Evaluate impact on articulatory speech 

synthesis
Adina Simulations
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For more …
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